Search results for "RNA processing"
showing 10 items of 63 documents
Transcriptional and post-transcriptional regulation of iNOS expression in human chondrocytes
2009
Chondrocytes are important for the development and maintenance of articular cartilage. However, both in osteoarthritis (OA) and rheumatoid arthritis (RA) chondrocytes are involved in the process of cartilage degradation and synthesize important immunomodulatory mediators, including nitric oxide (NO) generated by the inducible NO synthase (iNOS). To uncover the role of iNOS in the pathomechanisms of OA and RA, we analyzed the regulation of iNOS expression using immortalized human chondrocytes as a reproducible model. In C-28/I2 chondrocytes, iNOS expression was associated with the expression of the chondrocyte phenotype. Peak induction by a cytokine cocktail occurred between 6 and 8h and dec…
Basic phenotypic analysis of six novel yeast genes reveals two essential genes and one which affects the growth rate
1999
Phenotypic analysis was performed on six mutants of Saccharomyces cerevisiae deleted in one of the following open reading frames (ORFs), located on chromosome II: YBR254c, YBR255w, YBR257w, YBR258c, YBR259w and YBR266c. Disruption of the ORFs was carried out in the diploid strain FY1679 using the kanMX4 marker flanked by short sequences homologous to the target locus. Tetrad analysis following sporulation of the heterozygous disruptants showed that YBR254c and YBR257w are essential genes. YBR257w was later characterized and renamed POP4, its gene product being involved in 5.8S rRNA and tRNA processing (Chu et al., 1997). The tetrad analysis performed for the heterozygous disruptant for YBR2…
RNA marker modifications reveal the necessity for rigorous preparation protocols to avoid artifacts in epitranscriptomic analysis
2021
Abstract The accurate definition of an epitranscriptome is endangered by artefacts resulting from RNA degradation after cell death, a ubiquitous yet little investigated process. By tracing RNA marker modifications through tissue preparation protocols, we identified a major blind spot from daily lab routine, that has massive impact on modification analysis in small RNAs. In particular, m6,6A and Am as co-varying rRNA marker modifications, appeared in small RNA fractions following rRNA degradation in vitro and in cellulo. Analysing mouse tissue at different time points post mortem, we tracked the progress of intracellular RNA degradation after cell death, and found it reflected in RNA modific…
Differential polyadenylation pattern of ovalbumin precursor RNAs during development.
1986
The expression of the ovalbumin gene encoding for the major hen oviduct protein slows down with age. Analysis of Northern blots of electrophoretically separated total and poly(A) + RNA from oviducts of hens of different age with an ovalbumin-specific probe (nick-translated 9.5 kb ovalbumin gene DNA cloned into pBR322) revealed that the largest high molecular weight ovalbumin RNA precursor (7.9 kb band, representing the putative primary transcript of the ovalbumin gene) was most intense if total RNA from non-egg-laying old hen oviduct was checked as compared to that from egg-laying mature animals. On the other side, the 7.9 kb RNA precursor band was readily detected in the poly(A) + RNA from…
Analysis of RNA modifications by liquid chromatography–tandem mass spectrometry
2016
The analysis of RNA modifications is of high importance in order to address a wide range of biological questions. Therefore, a highly sensitive and accurate method such as liquid chromatography-tandem mass spectrometry (LC-MS/MS) has to be available. By using different LC-MS/MS procedures, it is not only possible to quantify very low amounts of RNA modifications, but also to detect probably unknown modified nucleosides. For these cases the dynamic multiple reaction monitoring and the neutral loss scan are the most common techniques. Here, we provide the whole workflow for analyzing RNA samples regarding their modification content. This includes an equipment list, the preparation of required…
Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance.
2000
AbstractPosttranscriptional gene silencing (PTGS) in plants results from the degradation of mRNAs and shows phenomenological similarities with quelling in fungi and RNAi in animals. Here, we report the isolation of sgs2 and sgs3 Arabidopsis mutants impaired in PTGS. We establish a mechanistic link between PTGS, quelling, and RNAi since the Arabidopsis SGS2 protein is similar to an RNA-dependent RNA polymerase like N. crassa QDE-1, controlling quelling, and C. elegans EGO-1, controlling RNAi. In contrast, SGS3 shows no significant similarity with any known or putative protein, thus defining a specific step of PTGS in plants. Both sgs2 and sgs3 mutants show enhanced susceptibility to virus, d…
Post-transcriptional analysis of rat mitochondrial D-3-hydroxybutyrate dehydrogenase control through development and physiological stages.
1991
Abstract The nuclear encoded mitochondrial D -3-hydroxybutyrate dehydrogenase (BDH) is synthesized in the cytosal as a larger precursor. This membrane enzyme which requires lecithin for activity plays an essential role in energy metabolism as a ketone bodies-converting enzyme. A cDNA clone of the rat liver enzyme encompassing an antigenic determinant peptide has been isolated after immunoscreening of a λ gt11 expression library. The nucleotide sequence of this 279-base cDNA insert contains a single open reading frame of 93 amino-acids, which represents about a third of the mature enzyme. Amino-acid sequence analysis predicts a hydrophobic stretch of 29 amino-acids long which probably functi…
BASE-SPECIFIC RIBONUCLEASES POTENTIALLY INVOLVED IN HETEROGENEOUS NUCLEAR-RNA PROCESSING AND POLY(A) METABOLISM
1984
Abstract Polyadenylation and splicing of heterogeneous nuclear RNA, two crucial steps in mRNA processing, are apparently enzymically mediated processes. This contribution summarizes the properties and the presumed functions of the known poly(A) catabolic enzymes (endoribonuclease IV and V, 2′,3′-exoribonuclease) as well as those of the pyrimidine-specific endoribonucleases associated with snRNP—hnRNP complexes (endoribonuclease VII, acidic p I 4.1 endoribonuclease and poly(U)-specific U1 snRNP-nuclease).
Impact of High pH Stress on Yeast Gene Expression: A Comprehensive Analysis of mRNA Turnover During Stress Responses.
2015
Environmental alkalinisation represents a stress condition for yeast Saccharomyces cerevisiae, to which this organism responds with extensive gene expression remodelling. We show here that alkaline pH causes an overall decrease in the transcription rate (TR) and a fast destabilisation of mRNAs, followed by a more prolonged stabilisation phase. In many cases, augmented mRNA levels occur without the TR increasing, which can be attributed to mRNA stabilisation. In contrast, the reduced amount of mRNAs is contributed by both a drop in the TR and mRNA stability. A comparative analysis with other forms of stress shows that, unlike high pH stress, heat-shock, osmotic and oxidative stresses present…
Regulation of NOS expression in vascular diseases
2020
Nitric oxide synthases (NOS) are the major sources of nitric oxide (NO), a small bioactive molecule involved in the regulation of many cellular processes. One of the most prominent functions of NO is regulation of vasodilatation and thereby control of blood pressure. Most important for vascular tone is NOS3. Endothelial NOS3-generated NO diffuses into the vascular smooth muscle cells, activates the soluble guanylate cyclase resulting in enhanced cGMP concentrations and smooth muscle cell relaxation. However, more and more evidence exist that also NOS1 and NOS2 contribute to vascular function. We summarize the current knowledge about the regulation of NOS expression in the vasculature by tra…